Andrew Hacker presents
a case against high school mathematics:
Of all who embark on higher education, only 58 percent end up with bachelor’s degrees. The main impediment to graduation: freshman math. The City University of New York, where I have taught since 1971, found that 57 percent of its students didn’t pass its mandated algebra course. The depressing conclusion of a faculty report: “failing math at all levels affects retention more than any other academic factor.”
He doesn't argue that we remove maths from the curriculum, but instead replace it with a kind of mathematics that is more practical, and more interesting. James Joyner occupies
a middle ground on the issue:
At the same time, while most of us will never need to solve a quadratic equation, much less do whatever it is that Calculus is used for, at least one in twenty will. How will our future mathematicians, physicists, chemists, and engineers discover their interest and aptitude for those endeavors if they’re not exposed to abstract math in high school? Maybe there’s some middle ground solution that allows people to graduate high school and college taking courses in practical math and science but offering non-punitive opportunities for students to see whether they have the aptitude for the more abstract varieties? Part of the problem is that our entire system is geared around semester-long sequences that result in the earning of credit hours. So, there’s no way to take algebra or calculus—or, for that matter, introductory philosophy or Latin—for a few weeks, struggle to stretch one’s mental facilities–and then move on to something else without penalty. That means that either we make mandatory courses that everyone doesn’t strictly “need” or else we make optional courses that everyone should at least be exposed to. Instead, we should allow for broad exposure and familiarization with the opportunity to move on without penalty into subjects where one’s natural talents and aptitudes lie.